
Securing a Web server
Make your Web server public while keeping it safe

Skill Level: Intermediate

Sean-Philip Oriyano (sean.oriyano@gmail.com)
IT Instructor
Independent Consultant

21 Apr 2009

Web servers are one of the many public faces of an organization and therefore are
potentially an easy target. As a public resource, a Web server is like "shark bait" for
some. But it doesn't have to be: Learn how a Web server can be public and safe at
the same time.

Web servers are one of the many public faces of an organization—and one of the
most easily targeted. Web servers represent an interesting paradox—namely, how
do you share information about your organization without giving away the so-called
store? Solving this dilemma can be a tough and thankless job; but it's also one of the
most important.

Before I get too far, though, let's take a look at some of the threats that your server
faces by virtue of being one of the "troops" on the front line.

Threats against Web servers

Now, there's a tremendous number of threats facing a Web server, and many
depend on the applications, operating system, and environment you have configured
on the system itself. What I have assembled in this section are some of the more
generic attacks that your poor server may face.

Denial of service

The denial of service (DoS) attack is one of the real "old-school" attacks that a

Securing a Web server
© Copyright IBM Corporation 2009. All rights reserved. Page 1 of 10

mailto:sean.oriyano@gmail.com
http://www.ibm.com/legal/copytrade.shtml


server can face. The attack is very simple, and nowadays it's carried out by those
individuals commonly known as script kiddies, who basically have a low skill level. In
a nutshell, a DoS attack is an attack in which one system attacks another with the
intent of consuming all the resources on the system (such as bandwidth or
processor cycles), leaving nothing behind for legitimate requests. Generally, these
attacks have been relegated to the category of annoyance, but don't let that be a
reason to lower your guard, because there are plenty of other things to keep you up
at night.

Distributed denial of service

The distributed DoS (DDoS) attack is the big brother of the DoS attack and as such
is meaner and nastier (yes, I do have two older brothers: Why do you ask?). The
goal of the DDoS attack is to do the same thing as the DoS, but on a much grander
and more complex scale. In a DDoS attack, instead of one system attacking another,
an attacker uses multiple systems to target a server (your server), and by multiple
systems I mean (in some cases) not hundreds or thousands, but more on the order
of hundreds of thousands. Where DoS is just an annoyance, a DDoS attack can be
downright deadly, as it can take a server offline quickly. The good news is that the
skill level required to pull a DDoS attack off is fairly high.

Some of the more common DDoS attacks include:

• FTP bounce attacks. A File Transfer Protocol (FTP) bounce attack is
enacted when an attacker uploads a specially constructed file to a
vulnerable FTP server, which in turn forwards it to another location, which
generally is another server inside the organization. The file that is
forwarded typically contains some sort of payload designed to make the
final server do something that the attacker wants it to do.

• Port scanning attack. A port scanning attack is performed through the
structured and systematic scanning of a host. For example, someone may
scan your Web server with the intention of finding exposed services or
other vulnerabilities that can be exploited. This attack can be fairly easily
performed with any one of a number of port scanners available freely on
the Internet. It also is one of the more common types of attacks, as it is so
simple to pull off that script kiddies attempt it just by dropping the host
name or IP address of your server (however, they typically don't know
how to interpret the results). Keep in mind that a more advanced attacker
will use port scanning to uncover information for a later effort.

• Ping flooding attack. A ping flooding attack is a simple DDoS attack in
which a computer sends a packet (ping) to another system with the
intention of uncovering information about services or systems that are up
or down. At the low end, a ping flood can be used to uncover information
covertly, but throttle up the packets being sent to a target or victim so that

developerWorks® ibm.com/developerWorks

Securing a Web server
Page 2 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


now, the system will go offline or suffer slowdowns. This attack is "old
school" but still very effective, as a number of modern operating systems
are still susceptible to this attack and can be taken down.

• Smurf attack. This attack is similar to the ping flood attack but with a
clever modification to the process. In a Smurf attack, a ping command is
sent to an intermediate network, where it is amplified and forwarded to the
victim. What was once a single "drop" now becomes a virtual tsunami of
traffic. Luckily, this type of attack is somewhat rare.

• SYN flooding. This attack requires some knowledge of the TCP/ IP
protocol suite—namely, how the whole communication process works.
The easiest way to explain this attack is through an analogy. This attack
is the networking equivalent of sending a letter to someone that requires a
response, but the letter uses a bogus return address. That individual
sends your letter back and waits for your response, but the response
never comes, because it went into a black hole some place. Enough SYN
requests to the system, and an attacker can use all the connections on a
system so that nothing else can get through.

• P fragmentation/fragmentation attack. In this attack, an attacker uses
advanced knowledge of the TCP/IP protocol to break packets up into
smaller pieces, or "fragments", that bypass most intrusion-detection
systems. In extreme cases, this type of attack can cause hangs, lock-ups,
reboots, blue screens, and other mischief. Luckily, this attack is a tough
one to pull off.

• Simple Network Management Protocol (SNMP) attack. SNMP attacks
are specifically designed to exploit the SNMP service, which is used to
manage the network and devices on it. Because SNMP is used to
manage network devices, exploiting this service can result in an attacker
getting detailed intelligence on the structure of the network that he or she
can use to attack you later.

Web page defacement

Web page defacement is seen from time to time around the Internet. As the name
implies, a Web page defacement results when a Web server is improperly
configured, and an attacker uses this flawed configuration to modify Web pages for
any number of reasons, such as for fun or to push a political cause.

SQL injection

Structured Query Language (SQL) injections are attacks carried out against
databases. In this attack, an attacker uses weaknesses in the design of the
database or Web page to extract information or even manipulate information within
the database. Although I can't get into the specifics of how to pull this type of attack

ibm.com/developerWorks developerWorks®

Securing a Web server
© Copyright IBM Corporation 2009. All rights reserved. Page 3 of 10

http://www.ibm.com/legal/copytrade.shtml


off, you can look it up if you have SQL knowledge, which—if you're hosting database
on your Web server—you should have.

Poor coding

Anyone who has been a developer or worked in information technology has seen the
problems associated with sloppy or lazy coding practices. Poor coding problems can
result from any one of a number of factors, including poor training, new developers,
or insufficient quality assurance for an application. At its best, poor coding can be an
annoyance, where features don't work as advertised; at its worst, applications can
have major security holes.

Shrink-wrapped code

This problem is somewhat related to the above issues with poor coding, but with a
twist: Basically, this problem stems from the convenience of obtaining precompiled
or pre-written components that can be used as building blocks for your own
application, shortening your development cycle. The downside is that the
components you're using to help build your application may not have gone through
the same vetting process as your in-house code, and applications may have
potential problem areas. Additionally, it's not unheard of for developers who don't
really know how to analyze the code and understand what it's actually doing to put
so-called "shrink-wrapped" components in applications. In at least one case I can
think of, I'm aware of a developer using a piece of shrink-wrapped code to provide
an authentication mechanism for an application that was actually authenticating
users, but also covertly e-mailing the same credentials to a third-party.

On the ramparts

Okay, now that I've thoroughly scared you about what kinds of threats are out there,
I'll take a look at how you can protect yourself from harm.

First, let me detail my six-point plan for protecting Web servers:

1. Separate Web servers for internal and external use. This sounds like a
no-brainer, but it still bears repeating. Most organizations have
Web-based applications or sites used internally, as well as applications
and sites used externally. In an ideal situation, these two sets of servers
and content should be kept separate, with internal and external sites
having their own servers with as little crossover between them as
possible. By splitting systems apart like this, you avoid the probability (or
at least lessen the risk) of an attacker breaching a server and getting

developerWorks® ibm.com/developerWorks

Securing a Web server
Page 4 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


access to data or even internal systems.

2. Separate development and production servers. In my time, I have
known several companies that have violated this rule by letting their
development team work on production servers to develop their code or
tweak existing code. Typically, this is just a case of extreme
laziness—one that can lead to catastrophic problems later when an
attacker sees your unpolished code and exploits it to his or her own ends.
Also, consider that your own developers may compromise security by
testing and tweaking code. Do yourself a favor: Implement a development
environment.

3. Regular audits. Any Web server or Web application worth its salt will
have some method of generating logs of activity on the system. After this
information is logged, make it part of your regular routine to scan the logs
for problems, such as application failures or suspicious activity. Keep in
mind that an audit log is like evidence collected at a crime scene: It's
essentially worthless unless you intend to examine it later.

4. Keep your system up to date. Do I really need to go through this one?
Yes, I do. Patching a system is an often-overlooked problem when it
really shouldn't be. Ideally, you should keep an eye on whether patches,
service packs, updates, or other items become available that can help
secure your system. Depending on your hosting platform and other
factors, you may have the option of having these updates delivered
automatically, or you may have to use the old-fashioned manual delivery
method. Also keep in mind that many times, updates are the only way to
fix problems such as those related to buffer overflows, network client
issues, and so on.

5. Vulnerability scanning. In previous articles (see Resources), I covered
the topic of vulnerability scanning as a tool for finding problems in your
hosting and application infrastructure. Vulnerability scanning can be a
very powerful tool in the ongoing struggle to uncover problems relating to
software, such as configuration and patching issues. Another advantage
is that these scanning tools are regularly updated, so you can use them to
find the latest problems that, in a number of cases, include issues that
you may not even be aware of, allowing you to address them before they
can be exploited. Tools such as the freeware Nessus (see Resources)
can be a great asset to administrators regardless of whether you host on
Linux®, UNIX®, or some other platform.

6. Developer training. This one may be a bit more difficult to pull off, but it
reaps a tremendous reward, if undertaken. Educating developers on
secure coding practices can result in the elimination or reduction of
problems associated with sloppy or lazy coding.

ibm.com/developerWorks developerWorks®

Securing a Web server
© Copyright IBM Corporation 2009. All rights reserved. Page 5 of 10

http://www.ibm.com/legal/copytrade.shtml


The other details

Aside from these six points, there are plenty of other things you can do to improve
security in your organization's hosting structure. Let's take a look at some of the
things that tend to cause problems and how you can address them.

Misconfiguration

As hardware and software have become more complex and IT and development
teams have gotten smaller, the potential for something to slip under the radar, so to
speak, has grown. Fortunately, using vulnerability scanners, automated scanners,
and just plain and simple education and due diligence can reduce misconfiguration
problems.

Banner information

Banner information can reveal a myriad of information to those who actually know it's
there and how to look for it. Banner information can reveal such telling information
as version data that may help an attacker.

For example, when you make a request to a Web server to request a static piece of
content, such as a basic .html or .htm file, something known as a content location
header is prepended to the response. In a default configuration, in some Web
servers, this content header will reference an IP address and may or may not
provide the fully qualified domain name (FQDN). In a worst-case scenario, this
header could reveal internal IP address information along with other data. Take a
look at the following header in Listing 1.

Listing 1. Sample content location header

HTTP/1.1 200 OK
Server: <web server name and version>
Content-Location: http://w.x.y.z/index.htm
Date: Thu, 1 Jan 2009 14:03:52 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, 31 Dec 2008 18:56:06 GMT
ETag: "067d136a639be1:15b6"
Content-Length: 4325

This header tells you quite a bit about your server, but never fear: Web servers can
quite commonly have this information sanitized or modified to a particular
organization's tastes. (Consult your Web server's documentation for more
information.)

Permissions

developerWorks® ibm.com/developerWorks

Securing a Web server
Page 6 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Permissions still tend to be a problem in some circles. Often, they are incorrectly
assigned or not properly planned, allowing individuals access to parts of the server
or application they should not have. Always check to make sure that those who
manage and interact with your server have the appropriate permissions to do what
they need to do and nothing more: This is also known as least privilege.

Error messages

We have all gotten the dreaded 404 message and its cousins from time to time,
telling us that the information we're looking for cannot be found or has been a victim
of some other type of foul play. But those error messages could be telling you a lot
more if you take a closer look. To an attacker, any error message your Web server
or application generates can reveal information about how your application is
configured, what libraries you're using, database connection strings, plus a whole lot
more. Fortunately, it doesn't have to be this way. You should use all your error
messages to your advantage in testing and development to help you catch
problems. But when you deploy your application or server into production, your error
messages should be disabled or configured to reveal very generic information.
(Consult your Web server documentation for information on how to do this.)

Services

When building a system to host your Web server and applications, you should
carefully plan what features and functionality you need, and then build the server
toward that goal. Basically, when you figure out what your server should be doing,
you enable just those services and features needed to support that role and remove
or disable everything not needed for the environment. Keep in mind that every
service or application that is present and enabled is just another potential hole that
an attacker can exploit.

Protocols

Again, much like services, any protocols—such as NetBIOS—that you don't need
should be kicked to the curb and disabled or outright removed.

User accounts

It's not uncommon for operating systems and applications to have default user
accounts set up when the operating system is installed. To be safe, this is something
that should get your attention. Make it a point to look at the user accounts present,
disable or remove those you don't need, and strengthen (and change) the
passwords for those you do need.

Sample and test files

It's not unheard of for some Web servers and applications to ship with sample files
and test components as technology demonstrators to show you what you can do

ibm.com/developerWorks developerWorks®

Securing a Web server
© Copyright IBM Corporation 2009. All rights reserved. Page 7 of 10

http://www.ibm.com/legal/copytrade.shtml


with the product. In a safe and secure environment, these files should be removed
from all production Web servers and applications, as they can be manipulated to
allow unauthorized access.

Ports

Look at the ports your Web server and applications need to function, and enable
(and monitor) those ports. In fact, the ports you're not using should be closed and
blocked from a firewall.

Some other protective measures

There are other items you might consider using to make your hosting environment
that much stronger:

• Intrusion-detection systems (host and network-based). These
systems are hardware or software devices that can help you monitor
access across the network to and from your server as well as activity on
the server itself.

• Antivirus software. Yes, you should have one on your Web server.

• Firewalls. Plenty of firewalls are available: Choose the one that best fits
your needs, and deploy it in front of your Web server.

• Common sense. Yes, I had to add this one. In the last decade, when the
Internet was making its way into our daily lives—both in the personal and
in the business worlds—the idea was to get whatever you could on the
Internet, because it was the thing to do. As a result of this "Zerg rush" to
get on the Internet quickly to make a big splash before your competitors,
a lot of information was put out there that never should have been.
Remember, not everything needs to be on the Internet. Also, keep in mind
that if you put something on the Internet, you pretty much can't put the
genie back in the bottle later. Not convinced? Take a look at
www.archive.org and see what your Web site or those of your competitors
have had over the past 10 years.

Conclusion

Securing a Web server and your hosted applications is indeed a daunting task, but
it's not an impossible one. With some research and a good, healthy dose of hard
work (and maybe some late nights with some strong coffee), you can make your
hosting environment that much stronger and save yourself some headaches in the
long run.

developerWorks® ibm.com/developerWorks

Securing a Web server
Page 8 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.archive.org
http://www.ibm.com/legal/copytrade.shtml


ibm.com/developerWorks developerWorks®

Securing a Web server
© Copyright IBM Corporation 2009. All rights reserved. Page 9 of 10

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• Get the latest security news and information at securityfocus.com.

• The SANS Institute is your one-stop shop for security information, certification
programs, and research.

• Learn more about scanning for vulnerabilities in Sean-Philip Oriyano's
developerWorks article, "Anatomy of a Web attack" (Feb 2009).

• The developerWorks Web development zone is packed with tools and
information for Web 2.0 development.

• IBM technical events and webcasts: Stay current with developerWorks'
technical events and webcasts.

Get products and technologies

• The Nessus vulnerability scanner provides several important scanning features,
such as high-speed discovery, asset profiling, and vulnerability analysis.

About the author

Sean-Philip Oriyano
Sean-Philip Oriyano has been actively working in the IT field since 1990. Throughout
his career, he has held positions such as support specialist to consultants and senior
instructor. Currently, he is an IT instructor who specializes in infrastructure and
security topics for various public and private entities. Sean has instructed for the U.S.
Air Force, U.S. Navy, and U.S. Army at locations both in North America and
internationally. Sean is certified as a CISSP, CHFI, CEH, CEI, CNDA, SCNP, SCPI,
MCT, MCSE, and MCITP, and he is a member of EC-Council, ISSA, Elearning Guild,
and Infragard. You can reach Sean at sean.oriyano@gmail.com.

Trademarks

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.

developerWorks® ibm.com/developerWorks

Securing a Web server
Page 10 of 10 © Copyright IBM Corporation 2009. All rights reserved.

http://www.securityfocus.com/
http://www.sans.org/
http://www.ibm.com/developerworks/web/library/wa-webattack/index.html
http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX44&S_CMP=ART
http://www.nessus.org/nessus/
mailto:sean.oriyano@gmail.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Threats against Web servers
	SQL injection
	Poor coding
	Shrink-wrapped code
	On the ramparts
	The other details
	Some other protective measures
	Conclusion
	Resources
	About the author
	Trademarks

