
First bachelor thesis

”
Popular Cryptographic Hash Functions“

Completed with the aim of graduating with a
Bachelor (FH) in Telecommunications and Media

from the St. Pölten University of Applied Sciences Telecommunications and Media degree course

under the supervision of

Bakk.rer.soc.oec. Bernhard Fischer

Completed By

Marcus Nutzinger
tm0420261102

St. Pölten, on June 18, 2006 Signature:

Declaration

I declare that

• this thesis is all my own work, that the list of sources and aids is complete and that I have
received no other unfair assistance of any kind,

• this thesis has not been assessed either in Austria or abroad before and has not been sub-
mitted for any other examination paper.

This piece of work corresponds to the work assessed by the appraiser.

St. Pölten, June 18, 2006
Place, Date Signature

i

Abstract

This paper faces popular cryptographic hash functions, their design and their mode of operation.
It will give an overview of used implementations and an overview of criteria for algorithms to be
secure.

To give a good basis for this paper, some basic terms (like hashing in general, hashing and cryptog-
raphy) are defined at the beginning. Then, the general aspects of hash functions in cryptography
are faced. The main properities will be described and some hashing examples are given. Also the
application areas of cryptographic hash functions will be discussed. At the end of this chapter,
some possible points for attacks on hash functions are mentioned.

After covering these common basics of cryptographic hash functions, this paper will go into the
depth of some of the most popular algorithms (like MD5 and SHA-1). For each algorithm the
design and the mode of operation are shown. It will also be pointed out, if there has been any
attacks on algorithms and how these attacks looked like.

The final part will try to point out some criteria an algorithm has to meet to be considered
as secure. It will also give a brief overview of the cryptographers point of view on what algorithms
should be used nowadays.

ii

Contents

1 Introduction 1

2 Definitions 2
2.1 Hashing . 2
2.2 Hash function . 2

2.2.1 One-way function H . 3
2.3 Hashing and cryptography . 3

2.3.1 Encryption vs. digest . 3
2.4 The attacks . 4

3 Cryptographic hash functions in general 5
3.1 Merkle-Damg̊ard construction . 5
3.2 Background . 5

3.2.1 Main challenges . 6
3.2.2 Cryptographic properties . 6

3.3 Hashing examples and the avalanche effect . 7
3.4 Application areas . 8

3.4.1 Dissociation: non-cryptographic algorithms 8
3.4.2 Message authentication codes (MAC) . 8
3.4.3 Password storing . 9
3.4.4 Digital signature . 9
3.4.5 Other uses . 9

3.5 Ways to attack . 10
3.5.1 Current situation . 11
3.5.2 Security of hash constructions . 11
3.5.3 Generic attacks . 12

4 Real world implementations 14
4.1 MD4 . 14

4.1.1 Algorithm description . 15
4.1.2 Security . 17

4.2 MD5 . 17
4.2.1 Differences and improvements to MD4 . 17
4.2.2 Algorithm description . 18
4.2.3 Applications . 19
4.2.4 Security . 20

4.3 SHA family . 20
4.3.1 SHA-1 algorithm description . 21
4.3.2 Security of SHA-0 and SHA-1 . 22
4.3.3 SHA-2 . 23
4.3.4 SHA-256 algorithm description . 23
4.3.5 Other SHA-2 variants . 25

iii

Contents iv

4.3.6 Security of SHA-2 . 25
4.4 RIPEMD . 25

4.4.1 RIPEMD algorithm description . 25
4.4.2 Security of RIPEMD . 26
4.4.3 Successors . 26
4.4.4 RIPEMD-160 algorithm description . 26

4.5 Whirlpool . 28
4.5.1 Algorithm description . 29
4.5.2 Security . 29

4.6 Tiger . 29
4.6.1 Algorithm description . 29
4.6.2 Security . 30

4.7 Conclusion . 30

5 Secure algorithms 31
5.1 Main properties . 31
5.2 One-wayness vs. bijectivity . 31
5.3 Inizialisation vector and message padding . 32
5.4 Procssing message words . 32
5.5 Output value . 32

5.5.1 Attacks . 32
5.5.2 Performance . 33
5.5.3 Function design . 33

5.6 Other criterias . 33
5.7 Today’s point of view . 34

6 Summary and prospect 36

Bibliography 38

Chapter 1

Introduction

Cryptography has a very big domain of primitives. The most versatile ones are hash functions.
Imagine that one stands for the problem of storing data not in plain text but just a representation
of the data as a stream of digits. For this (and other applications), a hash function is consulted,
which also has the benefit that no key is needed to convert plain text into senseless character
streams. Furthermore are hash functions one-way functions, so once converted into a hash stream,
no one can ever recompute the original input again.

The world needs such algorithms, because security gets more and more important nowadays,
mainly when using internet protocols. So this paper will explain the way, how hash functions
operate in general and what’s their use in the security sector. Because of the fact, that there exist
many different implementations of algorithms in the real world of cryptographic hash functions,
this paper will describe some of the most popular algorithms and how they work.

The following algorithms will be faced:

• MD4

• MD5

• SHA

• RIPEMD

• Whirlpool

• Tiger

This paper faces the following research hypotheses:

• How are hash function basically designed and how does they work?

• What hash functions can be rated as secure today?

To understand the anwers to these questions, some basic knowledge is needed. So this paper will
give some fundamentals to cryptographic hash functions in the beginning.

To answer the first hypothese, it’s important to understand the design of the popular hash func-
tions which will be described. These informations are provided in chapters 3 and 4. Furthermore
it has to be specified, which hash functions are rated as secure to answer the second hypothese.
So some reflections of the security from described algorithms and criteria for the design of secure
hash algorithms are given in chapter 5.

1

Chapter 2

Definitions

2.1 Hashing

Hashing is the process of converting an input value in a different output value (which is in most
cases of fixed length). This is done for different purposes, e.g. to generate an index in a data
structure, to produce a fixed length output stream and hide the real message (input), to generate
the checksum in the TCP header, etc.

2.2 Hash function

A hash function is a function, whose algorithm provides the transformation of variable length data
into streams of fixed length and domain. In general, the ouput is represented as a random string
of letters and numbers. This can be seen in figure 2.1. Here, three different output streams were
generated, independent of the length or contents of the input values. Hash functions can be used
for differnt applications. [14] [15]

Some examples are:

hash tables In computer sience, a hash table is seen as a data structure to associate keys with
values. So the main challenge is to look up for a value represented trough a given key. A
hash function is used to hash the key, so the application accessing the hash table can locate
the desired value. [16]

error correction A hash function can be used to detect errors in transmissions. The algorithm
is computed for the data at the sender, and the hashvalue is sent with the data. Then the
alogrithm is performed again at the receiver, and if the hash values don’t match, an error
has occurred at some point during the transmission. This is called a redundancy check.
Examples for redundancy check implementations are a checksum or the cyclic redundancy
check (CRC). [15] [17]

verifying file integrity Hash functions are often used to compute the hashcode of a file. Anyone
who gets the file (e.g. downloads it from an FTP-Server) can now compute the file’s hashcode
and compare it with the hashcode which was provided by the sender of the file (or the
operator of an FTP-Server). If the values differ, then the downloader knows that his file got
corrupted. On the other hand, if the two hashcodes are the same, he exactly knows that he
downloaded a correct file. [18] [19]

cryptography This is the application area of hash function, this paper will face. See the next
section for definitions.

2

2.3. Hashing and cryptography 3

Figure 2.1: A hash function at work [20]

2.2.1 One-way function H

In mathematical theory, a hash function is often called function H with its input M. This function
returns a fixed length ouput, called h, where m represents this fixed length. This paper will also
use this nomenclature.

2.3 Hashing and cryptography

In cryptography, hash functions are also used to generate a fixed length output stream from a given
(random) input. The output is - in this case - often called message digest or digital fingerprint.
For cryptographic purposes, the requirements on hash functions are much stronger than in other
applications. [15]

There are, for example, two main characterizations for cryptographic hash functions: [20]

• they have to be one-way functions

• there shouldn’t happen any collisions

The meaning of these points will be discussed later with all the other requirements in chapter 3.

2.3.1 Encryption vs. digest

In this case it’s very important to establish the border between these two terms. It’s clear that
the domain of hash functions also extends into the big field of cryptography. But this doesn’t
mean, that these algorithms are encryption algorithms like DES or AES. The big difference is,
that encryption algorithms cipher the input value with a given key to generate a ciphertext. This
text can easily be decrypted at any time, when someone knows the secret key. So encryption is
called a two-way operation.

On the other hand are standing hash algorithms. When hashing input values, the length of
the output will always be the same (see figure 2.1 on page 3 again). Also, it isn’t possible to
calculate the underlying message from a given hashcode (or at least it shouldn’t be possible -
Remember the two main requirements for cryptographic hash functions, section 2.3.). So hashing
can be called a one-way operation.

2.4. The attacks 4

2.4 The attacks

Real attacks and the weakness of hash functions will be described later in the chapters 4 and 5.
But at this point it could be important to define what it means to attack a hash function.

Attacking a hash function can’t only be done after knowing the algorithm. It has very much
to do with cryptoanalysis. The function must be exactly analyzed and the attack has to meet one
well defined point inside the algorithm. So to do this, it is nessecary to know all the mathematic
sequences to get a good outcome. Because of all the complexity, this paper will just show some
examples of attacks on algorithms (chapters 4 and 5) and will not go into the deep of attack-design.

Chapter 3

Cryptographic hash functions in
general

A hashcode can be seen as a digital fingerprint for a random input, that represents this value.
Mathematically, it’s denoted by:

h = H(M)

where H is the hash function, M the input value and h the hashcode. Now it’s important to define,
how to come to an output value. One widespread algorithm is the Merkle-Damg̊ard construction.

3.1 Merkle-Damg̊ard construction

Chapter 2 said, that hash functions produce a fixed length output. Now it has to be clarified,
how this process is done. One construction for this problem was found by Ralph Merkle and Ivan
Damg̊ard and is used by most of the common hash functions (like MD5 and SHA-1). As displayed
in figure 3.1, every input value is broken up into l equal blocks (x1 to xl). Then, every block serves
as input for a compression function (called f) to get a smaller output. The second input for the
compression function is the output of this compression function from the block before the actual
one (xl−1). So in the first round, the compression function needs another second input value,
which is called initialization vector (IV) and represents a fixed value. This means, calculating the
hashcode of block xi runs as follows: (see [1], 1996, p. 431)

hi = f(xi, hi−1)

The last block is padded with additional bits to get the same block size as all other blocks have.
This process is called length padding. At the end, the ouput of the round actually represents
the hashcode of the whole message. To harden the hash function, this value additional serves as
input for another function g, the finalisation function. This function can perform many different
operations to its input and is often built of the compression functions f. [21]

Thus, the singularity of each hash function lies in the design of compression functions f and
finalization functions g. And, furthermore, the block size an input value gets fragmented in, is
determining. Typical block sizes are 64 or 128 bytes.

3.2 Background

Now its time to face the requirements of hash functions. First, the possible problems are pointed
out, to show the hash functions properties for cryptographic usage afterwards.

5

3.2. Background 6

Figure 3.1: Schematic of the Merkle-Damg̊ard construction [21]

3.2.1 Main challenges

A cryptographic hash function is feasible, if it acts nearly like a random function while still being
deterministic. This is, of course, the point of view for a ideal hash function. But however, a
cryptographic hash function is seen as insecure, if one of the following points are practicable: [20]

• finding a message which produces a given hashcode

• finding two different messages which compute to the same hashcode

This is of course no exhaustive listing of scenarios, which would make a hash function insecure.
But these two points are the most (or at least very) important ones. So it has to be ensured, that
a hash function avoids such happenings and to guarantee this, some requirements are nessecary.

3.2.2 Cryptographic properties

There can’t be found any general description of properties for cryptographic hash functions. This
has its origin in the big domain of these algorithms. Because if the prerequesits are somehow
different for different environments, no standard is needed.

But one main characteristic is equal in all systems:

• Given M, it is easy to compute h

In addition, there have been found three demands which are generally considered: [20] (see [1],
1996, p. 429)

Preimage resistant Given h, it is hard to compute M such that H(M) = h

Second preimage resistant Given M, it is hard to find another message, M ′, such that H(M) =
H(M ′)

Collision resistant It is hard to find two random messages, M and M ′, such that H(M) =
H(M ′)

Preimage and second preimage resistant can be combined to the one-way property of hash func-
tions. The term preimage means, that one (or even two) parameters are known. This differs from
a collision, because there are no fixed parameters. So, when talking about attacks, a collision
attack is easier than finding matches to given preimages (see section 3.5).

These main attributes can also be taken to measure the security of a hash function. Because
a hash algorithm is more and more useless, if there can easy be found collisions. So these three
terms will be described in more detail now, together with their impact on the weakness.

3.3. Hashing examples and the avalanche effect 7

Preimage resistant measures, how difficult it is to find a message M which hashes to a given
hashcode h. Breaking this would mean, that the underlying algorithm doesn’t really provide a
one-way function anymore. This is, of course, not 100% correct, because if one can find a message
to a given hashcode, it isn’t said, that the hashcode was computed with the found message. But
however, a weak preimage resistance would be a big problem, because this knowledge could be
used to attack password databases. The attacker may never find out the real passwords, but if he
finds a message which hashes to the same value as the password, he can enter the system. [18]

Second preimage resistant measures the difficulty of finding a message M ′ which hashes to
the same value as a given message M. This property reminds of the preimage resistance. But
here, the attacker knows almost more, because a message and its hashcode are given. So to break
this, it has to be found a message, which hashes to the same hashcode as the other message (this
is the same as before), but the other message is familiar (this is new compared to the preimage
resistance). A weak second preimage resistance would mean, that an attacker could e.g. distribute
corrupted software where the packet produces the same hashcode as the ”good“ software packet.
Because when downloading from an FTP-server, the only method to check the originality of the
packet is to check its hashcode. [18]

Collision resistant measures, how hard it is to find two messages which produce the same
hashcode. An attacker here would like to find any two messages, but the result hashcode isn’t
very important, just that it’s the same for both messages. With a weak collision resistance, e.g.
digital signed documents would become suspect. The attacker could infiltrate another message
(which computes the same hashcode as the signed document) and simulate that it’s the signed
one. [18]

Now the general demands are defined. Another factor, which should be discussed, is the bit
length of the output stream. In most algorithms, this number is fixed for every hashcode, inde-
pendent of the input value. The ”right“ number of bits to choose is very much connected with
possible attacks, so this topic will be discussed later in this chapter in section 3.5. Also an impor-
tant property of cryptographic hash function is the randomness of the output value. Examples
and a description is subject of the next section.

3.3 Hashing examples and the avalanche effect

It’s time to demonstrate a hash function at work. For the following examples, the md5sum script
is used, which is installed on most Unix and Linux environments. Three hashcodes of different
files will be calculated first.

marcus@nuuz ~/test $ ls -l
insgesamt 103757
-rw-r--r-- 1 marcus users 47 18. Apr 14:26 file1
-rw-r--r-- 1 marcus users 130 18. Apr 14:27 file2
-rw-r--r-- 1 marcus users 106135552 18. Apr 14:27 file3

The output shows these files, one is very big and the others have a standard textfile-size. The
next step is to compute the hashcode out of these files.

marcus@nuuz ~/test $ md5sum *
ef814a3989fb2d6f25f90efc38db87a6 file1
94d43802bc7b21c45cbf0e7417d70c0e file2
b3d4c6676f0bdff1e3bfca5e8e44ff27 file3

As it’s displayed in this output, all hashcodes are different and every hashcode has the same length,
independent of the different file lengths. The next example will first look at the output of two files
f1 and f2.

3.4. Application areas 8

marcus@nuuz ~ $ cat f1
popular cryptographic hash functions
marcus@nuuz ~ $ cat f2
qopular cryptographic hash functions

The content of these two files is nearly the same, but in file f2, the first word begins with a ”q“.
So the file f2 differs just in one bit, because ”p“ conforms to 0x70 and ”q“ to 0x71. The next
ouput displays their hashcodes.

marcus@nuuz ~ $ md5sum f1 f2
1e6ebf94e61a6d9cd0cf6fab4d9b80dd f1
3efc15d5a929c49e005ec91d0386b9e9 f2

From the definitions above it’s clear, that different input values generate different output streams.
In this example, the two input values just differed in one bit, but the given hashcodes are although
very different. This shows an important fact - the avalanche effect. [18]

Avalanche effect This effect is pointed out with the last example. It appears when two slightly
different input values generate two significantly different output values. This property is very
important for cryptographic hash functions. If the avalanche effect doesn’t occur to a certain
degree, then it may be easy for cryptoanalysts to give prophecies about the input value just
because of the ouput stream. So another main design demand for cryptographic hash functions is
to find an algorithm follows this effect. One attribute of hash functions, which has impact on this
effect, is the block size the input value gets splitted in. [22]

3.4 Application areas

A cryptographic hash function is used in many different environments. But before speaking about
what cryptographic hash functions can do, it has to be specified, which hash algorithms can’t be
counted to the cryptography.

3.4.1 Dissociation: non-cryptographic algorithms

As said in chapter 2, hash functions can be used for many different operations. Also, the output
of various algorithms is called hash or hashcode. Well known algorithms are checksums or cyclic
redundancy check codes (CRC). These algorithms produce an output of fixed length, from any
input. With this definition, they can be added to the family of hash functions. But they have to
be well distanced from the cryptography. Checksum algorithms are very different from algorithms
used in cryptographic hash function. They use a simple mathematical structure, so it’s e.g. easy
to change the message without chaning the resulting checksum. So CRCs are just used to ensure
the detection of errors in a message, whereas cryptographic hash functions can be used to ensure
message integrity. [23]

3.4.2 Message authentication codes (MAC)

A MAC generates a tag out of an input value and a secret key. So it gets difficult for attack-
ers to calculate a real message-key pair. Hash functions can be used to create MAC functions,
which are called keyed-hash MAC (HMAC). HMACs can be used to verify the integrity and the
authencity of a message. So opposite to hash algorithms, they provide the authenticity using a
secret key. This key is added to the message before hashing it. So the receiver can verify, whether
the message really comes from the sender or not. HMACs are e.g. termed HMAC-MD5, depend-
ing on the underlying hash function. So the security of a HMAC is also based upon the security
of the used hash function and the MAC value has the same length as the hash output. [20] [19] [24]

3.4. Application areas 9

The MAC value is calculated as follows:

h = H(key1,H(key2,m))

where H is the underlying hash function and key1, key2 are two specially calculated variants of
the secret key. [25]

3.4.3 Password storing

In most applications, passwords aren’t stored in plain text because of security advisements. The
text is hashed before e.g. storing it into a database, so an attacker can’t find out the clear text
passwords because of the one-way property. To check, whether a user is allowed to log into the
system, the given password is hashed and compared to the hashcode from the password-database.

It’s important to say, that there exist additional features when storing passwords. It’s e.g. possible
to salt the ouput value. This happens as follows: [26]

1. A user enters his password

2. The plain text password gets hashed, using any hash function (e.g. MD5).

3. After this, an unique identifier (UID) is generated, e.g. using some hardware information,
time and date.

4. Then, this UID is added to the hash output value.

5. The resulting value is hashed again with any hash function.

So when storing this value in a database, any dictionary attack gets very difficult. Because when
storing only the hashed password, it’s generated an explicit connection between the user and his
hashed password (because of the one-way property - every password hashes to another value). But
when hashing the password-hash together with an UID, an attacker first has to create a dictionary
with possible UIDs to attach them to his dictionary of password-hashes.

3.4.4 Digital signature

Signing a document is like placing the autograph under it. This process is often used when sending
e-mails and has actual more to do with public-key cryptography than with hash functions. But the
following example will make clear, in which way hash functions are used when signing documents.

Bob (any person) wants to send an e-mail to Alice (any other person). This e-mail has a big
attachment, some files, pictures, etc. One way, to ensure, that the e-mail really comes from Bob,
is to encrypt the whole mail with Bob’s private key. So Alice can decrypt it only with Bob’s
public key and can be sure, that the mail comes from Bob. But the process of encryption and
decryption is very time-consuming when having big messages. So Bob has another possibility. He
can compute the hashcode of the whole e-mail. This e.g. 128 bits (when using MD5) can easily be
encrypted with Bob’s private key. Now, Bob sends the e-mail and the encrypted hashcode (which
is called signature) to Alice and she can compute her own hashcode out of the message. Then
she compares the hashcode from the decrypted signature with the calculated one. So it can be
ensured again, that the message wasn’t modified since Bob signed it. [27]

3.4.5 Other uses

The last three applications are very common. But there are, of course, still other ones, which are
used widely.

3.5. Ways to attack 10

Message integrity check This employment is similar to the signing of documents. Hash func-
tions are used to ensure message integrity, because one can calculate a hashcode from a message.
This hashcode can be transferred or kept together with the message (e.g. a file). So when receiving
or re-reading the message, it’s easy to check, whether the content has been modified or not. The
only operation to do is to calculate the hashcode from the message once more and compare it to
the existing one.

The intrusion detection software Tripwire uses this property for example to avert malware and
attacks. [20]

Commitment scheme This term means, that it should be ensured for one person to commit
to something without telling it anyone. The example will show, how this works: [20]

1. Alice wants to make sure that Bob gets a proof of any message, e.g. a mathematical solution
(called b), without the chance to read b.

2. So Alice computes a random number (called nonce, n) and appends it to b. Then she
computes the hashcode out of this value.

3. This hashcode gets Bob, as proof, that Alice really solved the problem.

4. When Bob also knows the solution, he can ask Alice about the nonce and calculte the
hashcode for himself. So he knows, whether he and Alice had the same result and that Alice
didn’t cheat.

Shorten input values This feature is often used for any cryptographic operation, because these
operations are much faster using a short input than a large one. So it’s practical to hash a message
and just use this e.g. 128 bit hash as input for any cryptographic algorithm. This property is used
for example when signing a digital document (see 3.4.4).

3.5 Ways to attack

The last section pointed out, that cryptographic hash functions have their use in many different
applications. They are widly used because of their two security properties: they are one-way
and collision-free. This section will discuss generic, implementation-independent, attacks on hash
functions.

Generally, the two properties can get attacked: [28] [6]

Against the one-way property These two variants are very similar, because attacks, that can
find one type of preimage can often find the other one as well: [28]

• A first-preimage attack means, that an attacks wants to find a message that hashes to
the same value as a given hash value h in fewer than 2L trials.

• A second-preimage attack means, to find a message M ′, which hashes to the same value
as a given message M in fewer than 2L trials.

Against the collision-free property Here, the attacker wants to find two messages M and
M ′, which hash to the same value in fewer than 2L/2 trials (L is the output length of the
used hash function).

There are still other points to attack. It’s e.g. possible to analyse the underlying compression
function f and build an attack out of these considerations. Some mechanisms are shown afterwards
(see 3.5.3). But before, a look at the current, real world situation is done.

3.5. Ways to attack 11

3.5.1 Current situation

Most of the currently known attacks are against the collision-free property, because the few preim-
age attacks aren’t practical nowadays. Here it’s important to say, that finding two messages, that
hash to the same value, is much easier than finding two message that hash to the same value
and are both useful for real world attacks. But it’s to note, that many protocol designers, which
use hash functions in their operations, made the protocls immune against collision attacks. So
it’s much more harder to succeed an attack on a real world protocol which uses hash functions. [28]

Bruce Schneier and Paul Hoffman summarize the current situation in the following way:

”Both MD5 and SHA-1 have newly found attacks against them, the attacks against
MD5 being much more severe than the attacks against SHA-1.

The attacks against MD5 are practical on any modern computer.

The attacks against SHA-1 are not feasible with today’s computers, but will be if the
attacks are improved or Moore’s Law continues to make computing power cheaper.

Many common Internet protocols use hashes in ways that are unaffected by these
attacks.

Most of the affected protocols use digital signatures.

Better hash algorithms will reduce the susceptibility of these attacks to an acceptable
level for all users.“ [28]

3.5.2 Security of hash constructions

The three main requirements on cryptographic hash functions were defined in 3.2.2. But however,
a hash function which has these characteristics may still be insecure, which can be seen here. It
was defined in section 3.1, that most of today used hash functions are using the Merkle-Damg̊ard
construction. This is because of the fact that Merkle and Damg̊ard could prove, that if the
compression function (f) is collision resistant, then the whole hash function is collision resistant.
But also this construction has its security weaknesses: [21]

• An attacker just knows the hashcode (h) and the length of the input message (len(m)). Now
he can choose any message M ′ and compute H(M ||M ′) to find an appropriate h (called
length-extension).

• Also with this construction, second preimage attacks are always much more efficient than
brute force attacks.

• When found a collision, it’s easy to generate a multicollsion. This indicates a situation,
where one has a hashcode which matches to more than two messages.

After focusing the characteristics of this construction, it has to be said, that the designer of a hash
function has also very much influence of its security. In section 3.1 was defined, that the last input
block gets length padded. This is done with a padding rule. It was also defined another element,
the inizialization vector (IV), which serves as input for the first pass of the compression function
(f). These two already called elements have much influence on the security of the hash function.
It’s important to have a distinct padding rule. This means, that there can’t exist two messages
which produce padded the same message. So it’s recommended to use a padding, which encodes
the length of the original input message. This mechanism is called ”MD-strengthening“ (after its
inventors Merkle and Damg̊ard). Furthermore, the IV should be defined when designing the hash
function, because it shouldn’t be possible for an attacker to choose any self-defined values for the
IV. [21] [6]

3.5. Ways to attack 12

3.5.3 Generic attacks

It’s already said, that attacks are possible on different properties of hash functions. Here, two
classes are described: [6]

• Attacks, which depend only on the size of the output bits of a hash function

• Attacks, which depend on the specifications of the compression (or round) function f

Attacks depending on the number of bits

This class of attacks just want to find a right hashcode out of the domain of possible output
values. When assuming a random function as hash function, the attacker has to try out every
possible value to find a valid hashcode. Hash functions are nearly random function, but not at
all. So these attacks get more and more successful when using a weak hash function, e.g. with a
little number of output bits. These attacks are also called brute force attacks. Here, an attacker
probably doesn’t have a clue. The chance to find a valid output value lies somewhere about 1/2n/2,
where n indicates the number of output bits. So statistically, one has to try half of the possible
values to find a valid one. This class combines the attacks against the two properties: one-way
and collision free. [6]

Preimage and second preimage attack These are attacks against the one-way property. An
opponent selects any random chosen message M and hopes that H(M) = h, where h is a given
hashcode. With a real random hash function, an attacker has to try 2n possible values. This
is, also with a low number of bits, very time-consuming. But with parallel attacks and other
improvements, this attacks can get feasible with just a few bits for the output value. So this
means, that the output length should be at least 64 bits. [6]

Birthday attack This is built on the birthday paradox and is a typical attack against the
collision free property. Here, any two messages M and M ′ have to be found, such that H(M) =
H(M ′). Describing the birthday paradox will also make clear, what it takes to do such an attack.

Birthday paradox The birthday paradox states that if there are 23 or more people in a room
then there is a chance of more than 50% that at least two of them will have the same
birthday. [29] This is a standard statistics problem, it’s called paradox because many people
can’t believe at first sight, that the chance is so big with this little number of people.

When attacking a hash function, this can be applied as follows: It’s much more easier to find a
collision (= two random messages that hash to any same hashcode) than finding a message M that
hashes to a given hashcode. Because of this, the collision attack is called birthday attack. Here, an
attacker would just need to try 2n/2 possible values which is much fewer work than attacking the
one-way property. One can see, that the number of bits get diveded by two against the one-way
attacks when talking about values to try. So to be secure, it’s recommended to choose a bit length
which is twice as much as it would possible be needed. E.g. when one wants to let the chance to
find a collision just be 1/280, then the output of the hash function should have a length of 160
bits. (see [1], 1996, p. 166)

Some thoughts about the number of bits

The above described class just focusses the number of bits within their ways of attack. Generally
it can be said, that a 64 bit output value would be too small, because of the weakness against a
birthday attack (with only 232 trials needed, which can be done in a short amount of time). Actual
used values are located between 128 bits and 256 bits, few algorithms generate an output value
of 512 bits. Considering Moore’s law, which says that computing power available for a given cost
doubles every 18 months, makes clear, that 128 bits aren’t idal for the security of the alogrithm.
It can be said, when noticing computing power and Moore’s law, that a hash function should have

3.5. Ways to attack 13

an output value of 160 bits to be collision-resistant. So 280 operations aren’t operable with a finite
budget and time. (see [4], 2004, p. 30) (see [1], 1996, p. 430)

The next class which will be pointed out doesn’t focus on the number of output-bits, but on
the properties of the compression function f.

Attacks depending on the compression function properties

These attacks are also called chaining attacks, because they look at intermediate chaining variables
(state of variables like Hi, xi during the operation, see figure 3.1) and not at the whole hash output.
The idea of these attack variants is to construct a preimage or second preimage.

Fixed point attack In a compression function f, a fixed point is a point where it applies that
f(Hi, xi) = Hi+1 and Hi+1 = Hi. So an attacker who finds this fixed point, can insert an arbitrary
number of blocks with the value xi. When this can be done, a (second) preimage is found, because
after inserting blocks, the hash result won’t differ. But this attack is only possible, if the chaining
variable (H) can be set to this specific value Hi. If the algorithm allows it, this can be done very
easy by modifying the inizialisation vector IV. So a fixed IV and the MD-strenghtening (see 3.5.2)
make this attack much more complex. [6] (see [4], 2004, p. 34)

Meet-in-the-middle attack This attack is a variation on the birthday attack, but it compares
intermediate chaining variables instead of the whole hash result and it enables an attacker to
construct (second) preimages. For example, a second preimage for message M is searched. The
IV (H0) and the hash value (H(M)) are fixed. Now, the attacker has to search an attack point
between two blocks in the chain, for another input M ′. When found a point where H(M ′) = H(M),
he can start with the IV and go back in the chain.
That this attack can work, one must be able to go backwards in the chain. The compression
function f has to be inverted, this means a pair Hi and xi has to be found, such that f(Hi, xi) =
Hi+1 for a given value of Hi+1 (this is also called a pseudo preimage). (see [4], 2004, p. 35)

Correcting block attack When searching a (second) preimage for a message M, an alternative
message M ′ has to be found, such that H(M) = H(M ′). When using this attack, the attacker
chooses one input block xi and replaces it with another block x′i, such that f(Hi, xi) = f(Hi, x

′
i).

In the case that all other blocks of M ′ have the same value as the corresponding blocks of M, the
two hash results are the same.
This attack is applicable, when, given Hi and Hi+1 (any values from the chain), a block x′i can
efficiently be found such that f(Hi, x

′
i) = Hi+1. (see [4], 2004, pp. 34,35)

Chapter 4

Real world implementations

This chapter will point out some of the most relevant hash alogrithms today. Table 4.1 shows
algorithms which will be discussed.

Name Output bits Block size Author(s), year
MD4 128 512 Rivest, 1990
MD5 128 512 Rivest, 1992
RIPEMD 128 512 RIPE Consortium, 1992
RIPEMD-128 128 512 Dobbertin, Bosselaers,

Preneel, 1996
RIPEMD-160 160 512 Dobbertin, Bosselaers,

Preneel, 1996
SHA-0 160 512 NIST/NSA, 1993
SHA-1 160 512 NIST/NSA, 1995
SHA-256 256 512 NIST/NSA, 2000
SHA-512 512 1024 NIST/NSA, 2000
Tiger 192 512 Anderson, Biham, 1996
Whirlpool 512 512 Barreto, Rijmen, 2000

Table 4.1: Lengths and designers of popular algorithms [30]

First, the MD4 and MD5 algorithms are described. Both are very much in common, MD4 more
as basis for other algorithms, whereas MD5 is still used in many applications. After this the SHA
algorithm variations are pointed out, which were invented from the NSA. Tiger and Whirlpool are
also discribed, like RIPEMD variants, which were developed in Europe.

4.1 MD4

The Message Digest 4 algorithm was designed by Ron Rivest. It was first proposed in 1990. MD4
generates a 128 bit hash code out of any input value. Rivests design goals were: [31] (see [1], 1996,
pp. 435,436)

Security It’s infeasible to find two messages hashing to the same value. Hence the most efficient
attack is brute force. Also, the security of this alogritm isn’t based on any mathematical
assumptions like the difficulty of factoring (direct security).

Speed, simplicity and compactness The algorithm is based on a simple set of bit operations
on 32-bit operands and so it is quite fast. It’s also coded as simple as possible without large
data structures (like substitution tables).

14

4.1. MD4 15

Favor little-endian architectures MD4 is fast on microprocessor archtectures, it’s optimized
specifically for Intel microprocessors.

The MD4 algorithm is placed in public domain. This means, that it’s accessible for everybody for
extensions and improvements. That’s also the reason, why this algorithm served as basis for the
design of some other cryptographic hash alogrithms. For example, MD5, the SHA-algorithms and
RIPEMD are all variants of MD4.

4.1.1 Algorithm description

The algorithm gets any input message M, represented by b bits - m0 to mb−1. There are five steps
performed to compute the hash result H(M) out of the input. [31]

Step 1: Append padding bits

Every message has to be a multiple of 448 (in bits). To get this, one ”1“ bit and various ”0“ bits
are added to the end of the message. When having the message as a multiple of 448, it’s exactly
64 bits away to be a multiple of 512, what’s important for the next step. [31]

This step is always performed, even if the number of bits is already a multiple of 448. So one to
512 bits may be added.

Step 2: Append length

Now, a 64-bit representation of the length from the original message is added to the padded
message. So the result is, that the message is now a multiple of 512. It’s not very likely, but it
could be that the original message is greater than 264. In this case, only the 64 low-order bits are
added. The whole message can now be seen as a multiple of 16 32-bit words. This is called M0 to
MN−1, where N is the number of 32-bit words, which represent the message. [31]

Step 3: Initialize buffer

MD4 uses a fixed inizialisation vector of four words. The hexadecimal values are as follows: [31]

word A 67 45 23 01

word B EF CD AB 89

word C 98 BA DC FE

word D 10 32 54 76

So C and D are just the reversed A and B.

Step 4: Process message in 16-word blocks

The algorithm works in three rounds, where every round consists of 16 steps. So there are 48 steps
which have to be done, and in each step, one of the four buffer values (A, B, C, D) is updated.
For this, some nonlinear functions are used, depending on the round. These functions are: [31]

F (X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
G(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)
H(X, Y, Z) = X ⊕ Y ⊕ Z

These functions take three words as input and compute one word. F is used for all step operations
in round 1, G in round 2 and H in round 3.

4.1. MD4 16

The compression function works on 512-bit blocks of the message, which are represented by 16
32-bit words. So in each round, every word is included, but in different order, depending on the
round (see table 4.2).

Round W0 W1 W2 W3 W4 W5 W6 W7

1 W8 W9 W10 W11 W12 W13 W14 W15

Round W0 W4 W8 W12 W1 W5 W9 W13

2 W2 W6 W10 W14 W3 W7 W11 W15

Round W0 W8 W4 W12 W2 W10 W6 W14

3 W1 W9 W5 W13 W3 W11 W7 W15

Table 4.2: Rounds and order of words in MD4 ([4], 2004, p. 49)

Figure 4.1 shows, what happens in one step. The four buffer words are serving as input, but only
three words are the input for fr (either function F, G or H) and the forth word gets updated. In
case of figure 4.1, the value of word A is added to the ouput of fr. After this, one message word
(Wj) and Ur is added. Ur represents a constant, which depends on the round. It’s 0 for round 1,
5A827999 for round 2 and 6ED9EBA1 for round 3. The whole value gets shifted in the end. The
rotation constant vs varies in every step. In the next step, another buffer value (in figure 4.1, it’s
D) gets updated. [31] (see [4], 2004, pp. 49,50)

It’s important to note, that the step operation of MD4 is reversible, because only a right shift and
some subtractions have to be done. But after all 48 steps (three rounds), the old buffer values are
added to the output values of round three.So the compression function can’t be inverted. Figure
4.2 shows the MD4 compression function. (see [4], 2004, pp. 49-51)

Figure 4.1: One step in MD4 ([4], 2004, p. 50)

4.2. MD5 17

Figure 4.2: The MD4 compression function ([4], 2004, p. 51)

Step 5: Output

The hash value representing the message is the concatination of the last buffer values A, B, C and
D. Four 32-bit words add up to excatly 128 bit.

4.1.2 Security

After introducing the algorithm, it was soon discovered, that the security level is much lower than
expected. This was demonstrated by some attacks on reduced versions of the algorithm. For
example, the first two rounds were successfully cryptoanalyzed and it was shown, that just 4 to 64
random selected messages are needed in order to find a collision of MD4. [7] [8] (see [4], 2004, p. 48)

So it can be said that MD4 was broken, even more than once. Hence, Rivest strengthened his
algorithm and the result was MD5.

4.2 MD5

After some attacks on MD4, Rivest realized, that the security level of his algorithm isn’t as strong
as he thought. It’s also said, that MD4 was implemented too fast in applications. So in 1991 to
1992, Rivest designed the Message Digest 5 algorithm, a strenghtened version of MD4. His new
algorithm is slightly slower than the predecessor, but it’s better to give up a little in speed to be
more secure. MD5 is also placed in public domain, like MD4. [32] [33] (see [5], 2003, p. 192)

4.2.1 Differences and improvements to MD4

The design of MD5 is very similar to MD4, but Rivest made some important changes, which make
MD5 to the more secure algorithm: [32] (see [4], 2004, p. 69)

• A fourth round has been added, so the compression function now consists of 64 steps.

4.2. MD5 18

• The additive constant (Us) now depends on the step (in MD4, Ur depends on the round),
so there are 64 different values for Us.

• The function G from round two was changed slightly to make it less symmetric.

• In each step, the result of the previous stop is added in the end. This procduces a faster
avalanche effect.

• The order of message words (Wj) has changed in rounds two and three, which makes the
patterns less alike.

• The per-step rotation constants (vs) were changed, that different rounds never use the same
value. Also, these constants were optimized to get a faster avalanche effect.

4.2.2 Algorithm description

MD5 generates a 128-bit output value, the same length like MD4. The algorithm gets any input
message M, represented by b bits - m0 to mb−1. To compute the hash value H(M), five steps are
performed.

Step 1: Append padding bits
Step 2: Append length
Step 3: Initialize buffer

In the first three steps, the same things are performed as in MD4 (see 4.1.1). Also the four buffer
words (A, B, C, D) which represent the inizialisation vector are the same.

Step 4: Process message in 16-word blocks

The MD5 algorithm works in four rounds to compute the output value. So with 16 steps in each
round, 64 steps are done on each 512-bit (16-word) message block. Every round takes the four
buffer words (A, B, C, D) as input and every step updates one of these four words. For this
updating, one nonlinear function is used, depending on the round. So there are four functions
defined: [32]

F (X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
G(X, Y, Z) = (X ∧ Y) ∨ (Y ∧ ¬Z)
H(X, Y, Z) = X ⊕ Y ⊕ Z

I(X, Y, Z) = Y ⊕ (X ∨ ¬Z)

Like in MD4, every word of the 16-word message block is included in every round, but in different
order, depending on the round (see table 4.3).

Round W0 W1 W2 W3 W4 W5 W6 W7

1 W8 W9 W10 W11 W12 W13 W14 W15

Round W1 W6 W11 W0 W5 W10 W15 W4

2 W9 W14 W3 W8 W13 W2 W7 W12

Round W5 W8 W11 W14 W1 W4 W7 W10

3 W13 W0 W3 W6 W9 W12 W15 W2

Round W0 W7 W14 W5 W12 W3 W10 W1

4 W8 W15 W6 W13 W4 W11 W2 W9

Table 4.3: Rounds and order of words in MD5 [32]

Figure 4.3 shows, how one step operates in MD5. The buffer words (A, B, C, D) serve as input.
Three of these words are taken to compute one 32-bit value using one of the before defined nonlinear

4.2. MD5 19

functions (fr). So as shown in figure 4.3, buffer word A gets updated in the following way: [32]
(see [4], 2004, p. 69)

A = (A + fr(B,C,D) + Wj + Us)<<vs + B

Wj represents one word of the message block, where j depends on the round and on the step (see
table 4.3). The added constant Us depends on the step. Us is computed so that in step i, Us is the
integer part of 232 × abs(sin i). The output gets shifted left vs times, where vs is also a constant
which depends on the step. In the end, another buffer value gets added to the whole output (in
case of figure 4.3, it’s B) and then the step starts over again. (see [4], 2004, pp. 69,70) So it can be
seen, that one step operation is revisible, as it’s the case in MD4, just by doing some subtractions
and a right shift. But the whole compression function (four rounds - 64 steps) can’t be inverted,
because the old buffer values (A, B, C, D) are added to the new ones before taking them as input
for the next compression function. Figure 4.4 shows the MD5 compression function. [32] (see [4],
2004, p. 70)

Figure 4.3: One step in MD5 ([4], 2004, p. 71)

Step 5: Output

The output is computed in the same way as in MD4, by just concatenating the final buffer values
to one 128-bit stream.

4.2.3 Applications

MD5 is very popular. It’s used for file integrity checks, with digital signature techniques and to
store password hashes. Because of serious flaws it may not be very useful anymore to rely on MD5
hashes in secure applications.

4.3. SHA family 20

Figure 4.4: The MD5 compression function (see [1], 1996, p. 437)

4.2.4 Security

As said before, MD5 isn’t free of attacks anymore. In 1996, a first attack on the compression
function of MD5 was introduced to find collisions. After attacks in 2004 it can be said, that the
compression function of MD5 isn’t collision resistant, which makes the whole algorithm insecure.
Furthermore, there are recognized possibilities to generate collisions for the whole algorithm. Also
the small hash size (128 bits) isn’t very applicable nowadays, because it makes MD5 vulnerable
against a birthday attack. [33] (see [4], 2004, pp. 70-73)

MD5 is still very much in use nowadays, although weaknesses are known. But it’s generally
recommended to switch to another hash function, which at least produces a longer bit length for
the output value to avoid possible birthday attacks. One alternative may be the SHA-1 algorithm.

4.3 SHA family

The term Secure Hash Algorithm describes a set of cryptographic hash functions. All of these
algorithms were designed by the NSA and published by the NIST (an US government standards
agency). These functions are also examples for algorithms, which where inspired by MD4. The
most common member of the SHA family is called SHA-1. However, the first standard was called
SHA (or SHA-0) and was published in 1993. It’s design principles were never made public, but in
1995, the NSA released SHA-1. This was done because of flaws in SHA-0, which reduced it’s se-
curity. Details were never been published, but further cryptoanalysis on SHA-0 have really shown
weaknesses. So SHA-1 is the preferred algorithm. [34] [35] (see [4], 2004, p. 96)

Between 2002 and 2004, the NIST published some new variants of the SHA algorithm which
are collectively called SHA-2. The standard describes four new functions, SHA-224, SHA-256,
SHA-384 and SHA-512. The main difference to SHA-1 is, that these algorithms produce a longer
output value (described by the number in the name of the standards). [34] (see [4], 2004, pp. 96,97)

Table 4.4 shows all SHA variants with their bitlength and the used message block size.

This section will first describe, how SHA-1 works. Also the little difference to SHA-0 is pointed
out. After talking about the security of SHA-0 and SHA-1 implementations, SHA-2 variants are
faced, their design and security.

4.3. SHA family 21

Algorithm name Block size (bit) Ouput length (bit)
SHA-0 512 160
SHA-1 512 160
SHA-224 512 224
SHA-256 512 256
SHA-384 1024 384
SHA-512 1024 512

Table 4.4: SHA variants [34]

4.3.1 SHA-1 algorithm description

Both, SHA-0 and SHA-1 produce a 160-bit hash value as output. Here, only the operating mode
of the SHA-1 algorithm will be described, but, of course, the difference to SHA-0 will also be shown.

As SHA-1 derives from MD4 (and thus also from MD5 in some case), the design is almost the
same. First, the message is padded and the original length is appended, to get the message a
multiple of 512 bits long. This happens in the same way like it was described in MD4 (see 4.1.1).
The inizialisation vector of SHA-1 consists of five 32-bit words, A, B, C, D and E. These are five
values, not four like in MD4 or MD5, because the output here has to be 160 bits long. The buffer
is inizialised to the following values: [35] (see [1], 1996, p. 442) (see [4], 2004, p. 97)

word A 67 45 23 01

word B EF CD AB 89

word C 98 BA DC FE

word D 10 32 54 76

word E C3 D2 E1 F0

The algorithm works on a 512-bit message block which is divided into 16 32-bit words (Wj).
The compression function consists of 80 steps which can be divided into four rounds. Every step
updates two of the five buffer values. Figure 4.5 shows one step operation. The shown step updates
the words B and E in the following way: (see [4], 2004, pp. 97,98)

E = E + fr(B,C,D) + A<<5 + Wj + Ur

B = B<<30

So the value of buffer B is just shifted to the left. To compute the new value of E, B, C and D are
used as input for a nonlinear function, whose structure depends on the round. So four functions
are defined: [35] (see [1], 1996, p. 443) (see [4], 2004, p. 97)

f1(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
f2(X, Y, Z) = X ⊕ Y ⊕ Z

f3(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)
f4(X, Y, Z) = X ⊕ Y ⊕ Z

These functions are the same as in MD4, but here, a fourth one was added which is just a copy of
the second function. The output of these functions is a 32-bit word, which is added to the initial
value of E (in case of figure 4.5). After this, A gets shifted five bit positions to the left and this
result is also added to E. Then, a word from the message block (Wj) and a constant Ur, which
depends on the round, are added. For Ur, four values are defined: [35] (see [1], 1996, p. 443) (see
[4], 2004, pp. 97,98)

4.3. SHA family 22

Figure 4.5: One step in SHA-1 ([4], 2004, p. 98)

U1 5A 82 79 99

U2 6E D9 EB A1

U3 8F 1B BC DC

U4 CA 62 C1 D6

The values for Wj are a bit special for SHA-1. The compression function consists of 80 steps, but
because of the 512-bit message block as input, only 16 different message words are available. MD4
and MD5 just use the same 16 values three or four times in one compression function. But SHA-1
uses the 16 ”real“ message words for the first 16 steps and computes new words for the other 64
steps afterwards. This procedure is called message expansion and the values of Wj for steps 17 to
80 are computed in the following way: [35] (see [1], 1996, p. 443) (see [4], 2004, p. 97)

Wj = (Wj−3 ⊕Wj−8 ⊕Wj−14 ⊕Wj−16)<<1

In this function lies the only difference between SHA-0 and SHA-1, because in SHA-0, the shift
by one bit position to the left isn’t included. (see [4], 2004, p. 98)

The step operation of SHA-1 can easily be inverted, as it’s the same with MD4 and MD5. But
after all 80 steps in one compression function, the initial buffer values (A, B, C, D, E) are added
to their final values, which makes the whole compression function irrevisible. (see Van Rompay,
2004, p. 99)

4.3.2 Security of SHA-0 and SHA-1

The NSA replaced SHA-0 with SHA-1 because of its insecurity. Although the real leaks of SHA-0
were never make public, first weaknesses were found by cryptoanalysts in 1998. By 2005, the

4.3. SHA family 23

complexity of finding collisions could be reduced to about 239 operations. [34] (see [4], 2004, pp.
99,100)

SHA-1 is very similar to SHA-0, as mentioned before. But the little difference (rotation by one
bit in the message expansion procedure) makes attacks more complex and attack strategies for
SHA-0 can’t be used to break SHA-1. But, of course, cryptoanalysts can rely on the knowledge
of attacks on SHA-0 and MD5, so collision attacks on the full SHA-1 version were found e.g. in
2005, which require about 269 operations. This number could be reduced by some researchers to
263, which leads to the thinking, that SHA-1 isn’t secure enough anymore. But these attacks are
all against the collision resistant property of hash functions, so it’s no as dangerous as possible
preimage attacks would be. So, compared to MD5, SHA-1 is secure, the only problem is the
number of output bits. Nowadays, 280 attempts for a birthday attack (2n/2 trials are needed for
this attack and n = 160 when using SHA-1) can’t be seen as very secure anymore. [34] (see [1],
1996, pp. 444,445)

Schneier and Ferguson defined a ”design security level“ of 128 bits, which means, that an output
size (in bits) of at least 256 bits should be used to be considered secure. (see [2], 2004, pp. 84-89)
This means that one should switch from SHA-1 to SHA-2 variants. Officially, the NIST meant
that SHA-1 will be used until 2010 before they adopt some SHA-2 alogrithms instead (and SHA-2
variants will also be more sophisticated in 2010). [34]

4.3.3 SHA-2

Design and structure of all SHA-2 variants is very similar to SHA-1. They are relatively new and
haven’t been analyzed by the public very much. But they were developed by the NSA and one
can assume, that they know what they’re doing. If more security than SHA-1 is needed, a larger
output value and hence a SHA-2 variant should be used. But it’s also important to note, that SHA-
2 variants are slower than SHA-1 (and MD5, which is also faster than SHA-1). (see [2], 2004, p. 89)

However, SHA-2 variants will form the future of hash algorithms. In fact that these variants
are all more or less similar, only the design of the SHA-256 algorithm will be pointed out and
after this, some distinctions between SHA-2 variants are described.

4.3.4 SHA-256 algorithm description

Here, a 256-bit value is computed out of any input. The compression function works with 512-bit
message blocks, so the input message has to be padded in the beginning, which is done in the
same way as in SHA-1, MD4 or MD5. The inizialisation vector consists of eight 32-bit words (A,
B, C, D, E, F, G, H), to get an output value of 256 (8×32)-bit length. Table 4.5 shows the initial
values. (see [4], 2004, pp. 101,102)

word A 6A 09 E6 67
word B BB 67 AE 85
word C 3C 6E F3 72
word D A5 4F F5 3A
word E 51 0E 52 7F
word F 9B 05 68 8C
word G 1F 83 D9 AB
word H 5B E0 CD 19

Table 4.5: SHA-256 inizialisation vector [9]

Internally, the message block in one compression function is divided into 16 32-bit words and the
whole compression function consists of 64 steps. Different from SHA-1 is, that no clear distinction

4.3. SHA family 24

into rounds can be made here. One step in SHA-256 updates two of the eight buffer values, the
others impact the outcome. Figure 4.6 shows one step in this algorithm. In the figure, words D
and H are updated. This happens in the following way: (see [4], 2004, pp. 102,103)

D = D + H + f1(E,F,G) +
∑

1
(E) + Wj + Us

H = H + f1(E,F,G) +
∑

1
(E) + f2(A,B, C) +

∑
2
(A) + Wj + Us

It can be seen, that the calculations in every step of SHA-256 are very complex. There are four

Figure 4.6: One step in SHA-256 ([4], 2004, p. 103)

functions defined, which are used in the step operation. f1 and f2 are boolean functions, similar
to functions f1 and f3 in SHA-1 (see 4.3.1). These functions get three buffer values as input and
compute one word out of them.

∑
1 and

∑
2 take one word and compute another word out of this

input. They are defined as follows: (see [4], 2004, p. 102)∑
1
(Z) = Z>>6 ⊕ Z>>11 ⊕ Z>>25∑

2
(Z) = Z>>2 ⊕ Z>>13 ⊕ Z>>22

Beside of these functions, the new values are influenced by Wj and Us. Us is just another additive
constant which depends on the step. Wj is a 32-bit word from the message block. As it’s in SHA-1,
SHA-256 uses the 16 32-bit words for the first 16 steps and, to compute the other 48 values for
Wj , message expansion is used. Here, message expansion is done in the following form (slightly
different from SHA-1): (see [4], 2004, pp. 102,103)

Wj = σ1(Wj−2) + Wj−7 + σ2(Wj−15) + Wj−16

where σ1 and σ2 are defined as follows: (see [4], 2004, p. 102)

σ1(Z) = Z>>17 ⊕ Z>>19 ⊕ Z→10

σ2(Z) = Z>>7 ⊕ Z>>18 ⊕ Z→3

4.4. RIPEMD 25

Like it’s in SHA-1, one step in SHA-256 is revisible. But when all 64 steps of the compression
function are done, the beginning buffer values (A to H) are added to the final ones. This makes
the whole compression function irrevisible. (see [4], 2004, pp. 103,104)

4.3.5 Other SHA-2 variants

SHA-256 was described before, but the NIST published three more algorithms. All four variants
are very similar, just the internal block size and the ouput size varies. SHA-224 works exactly in
the same way as SHA-256, it just uses a different inizialisation vector and outputs only 224 of 256
bits as hash value. SHA-384 and SHA-512 are using 64-bit instead of 32-bit words and work on
1024-bit message blocks. But the structure of SHA-512 is again the same as in SHA-256, just the
number of steps has been increased to 80. (see [4], 2004, p. 105)

Schneier and Ferguson mean, that the SHA-224 and SHA-384 standards are senseless. It’s good
enough (or even better) to use SHA-256 or SHA-512 instead, because internally these algorithms
are used anyway and only the ouput values are truncated. (see [2], 2004, p. 89)

4.3.6 Security of SHA-2

Design principles for the SHA-2 variants haven’t been made public. But it can be said, that even
if the design is similar to SHA-1, important improvements have been made by the NSA. Also,
all variants of the SHA-2 family use bitlength of 256 and above, which makes them more secure
and not so vulnerable against birthday attacks. After some analysis it’s also known, that these
algorithms have very much security against known attack schemes on other hash algorithms. [34]
(see [4], 2004, pp. 104-106)

But, however, these standards are new and the process of cryptoanalysis isn’t in the stadium
to tell whether these algorithms are really as secure as it seems.

4.4 RIPEMD

The RACE Integrity Primitives Evaluation Message Digest algorithm was designed in Europe
by the RIPE Consortium and was first published in 1992. Its design is based on MD4 with the
improvement of having two MD4 compression functions working in parallel. In 1996, Dobbertin
found a collision attack on a reduced version of RIPEMD. Although only a reduced version was
attacked, this meant an important security leak. So a strenghtened version of RIPEMD was de-
signed in 1996, called RIPEMD-128. But RIPEMD-128 was just seen as a short time upgrade for
RIPEMD users, because, also in 1996, a real successor was developed, called RIPEMD-160. [36]
[11] [37] (see [4], 2004, p. 89)

This section will first describe the original RIPEMD algorithm and afterwards, the design of
its successor, RIPEMD-160, will be faced.

4.4.1 RIPEMD algorithm description

The original algorithm produces a 128-bit hash value. So the buffer, which also serves as iniziali-
sation vector, is divided into four 32-bit words (A, B, C, D). The compression function works on
512-bit message blocks and, as a special for this algorithm, consists of two trails that are executed
in parallel. Every trail presents a own compression function, looking more or less like that in MD4.
So 48 steps in three rounds are done two times in parallel to modify the buffer values. One step
works similar as in MD4 (see 4.1.1). The whole compression function works as follows: (see [4],
2004, p. 90)

• The buffer values (A, B, C, D) serve as input for every trail.

4.4. RIPEMD 26

• The two trails work in parallel and every trail updates the buffer values through three rounds.

• In the end, the output of the two trails and the initial buffer values are combined to compute
new buffer values.

When defining the left trail output as AL, BL, CL, DL and the right trail output as AR, BR, CR, DR,
then the resulting values for A, B, C and D (after one compression function) are computed in the
following way: (see [4], 2004, p. 90)

A = B + CL + DR

B = C + DL + AR

C = D + AL + BR

D = A + BL + CR

4.4.2 Security of RIPEMD

RIPEMD uses a slightly modified version of the compression function used in MD4. Although
it was modified and some parameters (like constants) were changed, collisions for RIPEMD can
still be found with a complexity similar to MD4 attacks. So the changes on MD4, which were
made for RIPEMD, doesn’t result in a much stronger algorithm. As mentioned before, Dobbertin
found a collision on a reduced version of RIPEMD with only two rounds. But this attack could be
extended to find collisions in the whole hash function. Also, the complexity of finding collisions
for the reduced version is very low and lies at about 231 computations. (see [4], 2004, pp. 91-93)

4.4.3 Successors

Because of the security leaks described before, the original RIPEMD algorithm had to be replaced.
The weaknesses also influenced to design of new hash functions, called RIPEMD-128 and RIPEMD-
160. As it was said before, RIPEMD-128 was seen as plug-in for RIPEMD and should only be
used as temporary solution until RIPEMD-160 was released. This was also because 128 bit output
values doesn’t support any long time security (even not in 1996) whereas for RIPEMD-160 it
had been expected that it should be secure for ten years or more. Nowadays, of course, even a
160-bit output value may offer no long term security anymore. Because of this, two extensions of
RIPEMD-128 and RIPEMD-160 were introduced. These algorithms are called RIPEMD-256 and
RIPEMD-320 respectively. They may be used in applications, where a hash value longer than 160
bits is needed. But it must be noted, that these extensions don’t offer a higher security level. They
use more or less the same structure as their forerunner and in fact they are only as secure as the
128-bit or 160-bit versions. On the other hand it has to be said, that the complexity of an ordinary
birthday attack still depends on the number of bits. So against these attacks, RIPEMD-256 and
RIPEMD-320 offer more security. [36] [37] (see [4], 2004, pp. 95,96)

4.4.4 RIPEMD-160 algorithm description

RIPEMD-160 produces a 160-bit hash value out of any input message. The buffer consists of
five 32-bit words, A, B, C, D and E. These words serve as inizialisation vector and their first
values are the same as in SHA-1 (see 4.3.1). The message first gets padded, as e.g. in MD4. The
compression function words on 512-bit blocks of the input message. Figure 4.7 shows one step in
RIPEMD-160, which is computed as follows: [11] [10] (see [4], 2004, p. 93)

A = (A + fr(B,C,D) + Wj + Ur)<<vs + E

C = C<<10

As it can be seen in figure 4.7, every step updates two of the five buffer values. The value of
one buffer word (in case of figure 4.7, it’s C) is shifted ten times to the left. The new value of
A is influenced by all other buffer words. First, the output of a boolean function is added to the

4.4. RIPEMD 27

value of A. Five functions were defined, one is used for every step in one round, but two different
functions are used for the same round in the left and right trail.

These functions are: [11] (see [4], 2004, p. 94)

f1(X, Y, Z) = X ⊕ Y ⊕ Z

f2(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
f3(X, Y, Z) = (X ∨ ¬Y)⊕ Z

f4(X, Y, Z) = (X ∧ Y) ∨ (Y ∧ ¬Z)
f5(X, Y, Z) = X ⊕ (Y ∨ ¬Z)

Wj is a word from the message block, consisting of 16 words. The order of the message words is

Figure 4.7: One step in RIPEMD-160 ([4], 2004, p. 95)

defined by the permutations p and π, which also guarantee, that the order differs in every round
of every trail. The additive constant Ur depends on the round and also on the trail, so ten values
for Ur were defined. Then, this value gets shifted vs times, where vs depends on the step. In the
end, the input value of E gets added to this value to compute the final value of A (after one step).
[11] (see [4], 2004, p. 94)

It’s also important to note, that always two of these steps are done in parallel, one in every
trail. So the total number of steps is 160, because five rounds with 16 steps each are done two
times in one compression function. Like in all other described algorithms, the step operation is
revisible. But at the end of one compression function, the output values of the two trails and the
original input values are combined to compute the final output. This makes the whole compression
function irrevisible. Figure 4.8 shows one RIPEMD-160 compression function. h0 to h4 denote the
five buffer values A to E. It can also be seen, that every round uses another boolean function (f)
and a different additive constant (K). And, as mentioned before, the input of the message words
(X) depends on p and π. So the final values of A, B, C, D and E are computed as follows (AL to

4.5. Whirlpool 28

EL are the output words of the left trail, AR to ER are the output words of the right trail): [11]
[10] (see [4], 2004, p. 94)

A = B + CL + DR

B = C + DL + ER

C = D + EL + AR

D = E + AL + BR

E = A + BL + CR

So far, RIPEMD-160 is seen as secure. But it must be noted, that it’s not as popular and hence
not as well studied as other algorithms. At least the output value of 160 bits places a weakness
on this algorithm, because this may make it insecure against birthday attacks in a short period of
time. [36]

Figure 4.8: The RIPEMD-160 compression function [11]

4.5 Whirlpool

This algorithm was designed by Rijmen and Barreto. The first version (sometimes called Whirlpool-
0) was released in 2000 and since then, two revisions have been made. Whirlpool has another

4.6. Tiger 29

design than all the algorithms described before in this chapter. It’s compression function isn’t
based on the Merkle-Damg̊ard construction (see section 3.1), but on the Miyaguchi-Preneel scheme.
This means, that Whirlpool is a hash function which is based on a block cipher. [38] [39] [12]

4.5.1 Algorithm description

Whirlpool takes any input message less than 2256 bits in length and computes a 512-bit hash
result. As mentioned before, the algorithm is based on a block cipher. This is a 512-bit cipher
which uses a 512-bit key. Before starting the computations, the input value has to be padded to be
a multiple of 512 (in bits). This happens in the same way as in other algorithms, with adding one

”1“ bit, ”0“ bits and a 256-bit representation of the original input length. The resulting message
is divided into 512-bit blocks, m0 to mt. As inizialisation vector serves a 512-bit string, which is
filled up with ”0“ bits. [39] [12]

The compression function follows the Miyaguchi-Preneel scheme and iterates over all 512-bit blocks
of the padded message. Internally, the compression function works with a 8 × 8 matrix, so the
message blocks and the inizialisation vector have to be converted into the matrix-format. This is
done by function µ, which takes a bit stream and returns a 8 × 8 matrix, in which every entry
represents one byte. Another important element of Whirlpool is the internal block cipher W,
which is a modified version of the AES cipher. W encrypts a given message, using a given key.
[39] [12]

W [key](message) = ciphertext

The whole algorithm works as follows: [12]

ηi = µ(mi)
H0 = µ(IV)
Hi = W [Hi−1](ηi)⊕Hi−1 ⊕ ηi

As hash representation of the input message, the last value of H (Ht) is taken. [39] [12]

4.5.2 Security

Whirlpool got two revisions and is also adopted as an ISO/IEC standard [10]. It’s of course not
as widly used as other hash algorithms and haven’t been as well studied, but it can be said that
Whirlpool is secure, because no weaknesses have been found so far. Also using a hash result
with 512-bit length makes the algorithm pretty resistant against brute force attacks (like birthday
attacks).

4.6 Tiger

Tiger was first developed in 1996 by Anderson and Biham. The design motivation was to get an
algorithm which works efficient on 64-bit machines and also on existing 32-bit machines. Because
other algorithm were developed for 32-bit architectures, which made them slow for 64-bit users.
Also, Tiger should replace current, but already attacked hash functions (like MD4). [40] [13]

4.6.1 Algorithm description

This algorithm produces a 192-bit hash value out of any input message. In Tiger, all words consist
of 64 bits, hence the inizialisation vector is divided into three words with the following values: [13]

word A 01 23 45 67 89 AB CD EF

word B FE DC BA 98 76 54 32 10

4.7. Conclusion 30

word C F0 96 A5 B4 C3 B2 E1 87

As it’s in all other algorithms, the input message gets padded first and the original length is
added. After this, the whole input is a multiple of 512 (in bits). The compression function works
on 512-bit message blocks, which are divided into eight 64-bit words (m0 to m7). One flow of the
compression function works in three passes, where every pass updates all buffer values (A, B, C)
several times. Each pass is divided into eight rounds and every round gets all three buffer values
and one (of eight) message words (mi) as input. In every round, new values are computed for the
buffer words, using XOR, addition, subtraction and multiplication operations. After the first and
second pass, a key schedule operation is done, where all message words are updated two times.
In the end, the original buffer values are added to the final ones to make the whole compression
function irrevisible. [13]

4.6.2 Security

In the time, when Tiger was designed, it was considered as secure. Even the complexity of birthday
attacks (2192/2 = 296) was much too large for efficient attacks. But, of course, times have changed
and there were found collision attacks for the original version of Tiger with a complexity of about
244 operations. [40] [13]

4.7 Conclusion

In this chapter, an overview of popular cryptographic hash functions was given. All algorithms,
except Whirlpool, follow the Merkle-Damg̊ard construction and were more or less derived from
MD4. So it can be said, that MD4 influenced the design of some very widly used algorithms.
It’s interesting to note, that there’s a lot of interaction between cryptography and cryptoanalysis,
when designing hash functions. Because nearly every author took known weaknesses of other
algorithms into account for the design of new ones.

There can’t be said, which hash function one should choose. MD4 won’t be the first choice,
but e.g. MD5 and SHA variants are widly used. Between these two, SHA may be the better one,
at least because of the longer output value. But also RIPEMD offers a 160-bit result, like SHA-1,
so RIPEMD-160 may also be a candidate for an application.

In fact it must be clear that, mainly in cryptography, no real prognosis can be done. It could
always happen that more dangerous weaknesses are found in a popular algorithm, which causes
that applications switch to another, or new, hash function which isn’t focussed in this chapter.

Chapter 5

Secure algorithms

As one can see on the number of different flavours of cryptographic hash functions, it’s obvious
that there doesn’t exist a strict rule for the design of a secure algorithm. So this chapter will look
at the design principles of algorithms described in chapter 4 (and maybe some others) and will
try to select some criteria for an algorithm to be secure.

5.1 Main properties

The two main requirements on cryptographic hash functions were described in 3.2.2. A designer
has to decide, whether an algorithm should be both, collision resistant and one-way, or not. This
leads to the definiton of a ideal hash function.

Ideal hash function The ideal hash function is a random mapping from all possible input values
to the set of possible output values. ([2], 2004, p. 85)

It’s clear that a hash function can never met these demands. But a good algorithm acts very much
like this ideal hash function. It’s very important to proofe, whether the required prerequisits are
fulfilled. For example some of the algorithms in chapter 4 are still one-way functions, but attacks
have shown, that collisions can be found within a certain number of operations.

For a secure algorithm it’s essential to define excatly, what parts accomplish these requirements.
Because of the importance of these two properties (and the influence of weaknesses here on the
whole function), also a lot of cryptoanalytic work has to be done, before an algorithm can be
published as secure.

5.2 One-wayness vs. bijectivity

The meaning of one-wayness was defined in 3.2.2. Bijective means, that one input element is
assigned to exactly one output element, which makes a function reversible. So a function f is
bijective, if there’s a one-to-one correspondence between two sets X and Y , such that f(x) = y.
[41] Of course, this stands in disagreement with the one-wayness, but here, just rounds of the
compression function are focussed. This means, that it has to be decided, at which point the
bijectivity gets lost in order to get a one-way function.

Bijectivity can be good for a part of an internal round function. But this also means a one-
way mapping of input values to output values, what eases meet-in-the-middle attacks, because an
attacker can go backwards value for value. In most cases, the two techniques will be combined. So
at some point in the compression function, a feed-forward operation is done. This operation may
add the input buffer values to their final one, to make the whole compression function irrevisible.
(see [5], 2003, p. 214) For example MD4 and its successors use a feed-forward at the end of their

31

5.3. Inizialisation vector and message padding 32

compression functions.

When designing an alogrithm, it must clearly be defined, if the algorithm is bijective and at
which point (e.g. after one round or after one run of the compression function) and because
of what operations it becomes a one-way function. It’s also important to analyse, whether the
one-way property is really given at the end of the algorithm.

5.3 Inizialisation vector and message padding

It’s recommended to use a single, fixed IV and a padding rule, which e.g. adds the length of the
original message to the input value. Because of this length adding, it may be useful for some
algorithms to define a maximal length for an input message. (see [5], 2003, p. 215) The exact
value for IV isn’t critical, which can be seen when looking at the algorithms of chapter 4. All IV’s
are almost similar, except the on used in Whirlpool, which is set to 512 zero bits. This shows,
that it’s just important to use a fixed IV, because it complicates fixed point attacks.

Using a padding rule is also called MD-strenthening, which was explained in 3.5.2.

5.4 Procssing message words

MD4 and variants follow the technique of using every word of the message block several times.
Generally, this can be seen as a good design principle. The same words are used on different posi-
tions and serve as input for different functions, which means, that one word of the message block
impacts the output in several ways. (see [5], 2003, p. 216) Using this technique makes it harder for
an attacker to change a message words at a random position in the compression function, because if
the algorithm was good designed, the original word may have influenced the buffer values earlier in
the whole hash function. SHA and its variants use a different technique to ensure that all message
words are used several times. Here, words are computed out of others, to extend the number of
useable words (message expansion - see section 4.3). It’s a bit another way than MD4 goes, but in
the end, this also guarantees, that every message words influences the buffer values more than once.

A designer should make sure, that a kind of this techniques will be used, because this means
a secure way. The more often a word influences the whole output, the harder it is for an attacker
to insert his own words inside the algorithm. This also makes a correcting block attack more
difficult.

5.5 Output value

When designing hash functions, the number of bits of the output value is an important factor. It
influences many pointsw in the whole algorithm and should be chosen wise, because of different
criteria.

5.5.1 Attacks

One should look at the security and also on today’s standards. This is maybe the most important
point, because if someone releases an algorithm with a short number of bits (e.g. less than 160
bits), then the whole algorithm will be insecure, independent of all secure designed elements inside
the algorithm. With the computer power, which can be used today, brute force attacks with a
complexity of 264 to 280 (which means output length of 128 to 160 bits) are in a possible field. So
output length with 160 bits or more should be used, where nowadays, 160-bit outputs are seen as
the lowest limit.

5.6. Other criterias 33

5.5.2 Performance

It also has to be said, that the number of bits shouldn’t be increased senseless. Here, the factor
performance must be respected. Increasing the output length generally means, that the whole
algorithm speed decreases (because the number of bits have to be generated in some way). For
example MD5 (128-bit output) is much faster than SHA-1 (160-bit output). The SHA-2 variants
(e.g. SHA-512) are very slow algorithms. So there have to be found a good balance between
performance and the number of bits. Of course, hash functions have very complex operations
which take time, but if someone wants to hash a big amount of data, then he’ll give up some bits
of the output for a better performance.

5.5.3 Function design

When defining an output size, the result will directly impact the size of the buffer values, the
internal functions, round functions and the compression function. Tiger, SHA-384 and SHA-512,
for example, use a 64-bit word length. This influences the inizialisation vector values (at least in
the number of bits) and the process of splitting the whole input value in message words. Also,
such algorithms perform better on 64-bit platforms (e.g. Tiger was specially designed to work fast
on 64-bit machines). This fact has something to do with big- and little-endian architechtures and
is more a topic of the previous point.

The construction of the mathematical (boolean) functions is also important for the security of
a hash algorithm. For example, there shouldn’t be too much linearity between functions used in
different rounds.

5.6 Other criterias

It’s clear, that there can’t be given an exhaustive enumeration of all criterias, which have to be
considered when designing a secure hash function. The five points mentioned before in this chapter
are real big and important points, which mustn’t be forgotten in the design process. There will be
other ones, but as said at the beginning of this chapter, the variety and importance of criterias is
different for different algorithms, so no distinct list can be given, covering all supposable algorithms.

In this section, this paper will face one last but maybe very important point in the design process,
the cryptoanalysis.

In section 3.5, some attack mechanisms on hash functions where shown. So when designing a
hash algorithm, these attacks have to be taken into account. Also, some evaluations have to be
done, for statistical aims. The following things should be checked: (see [5], 2003, p. 216)

output value Are there any irregularities in the distribution or can the process of building the
output be reconstructed?

input value How much does a little difference in the input affect the output (alavanche effect)?

linearities Do some linearities exist between input and output, between functions, outputs of
internal rounds, in the message word processing, etc.?

In the end it should be said, that after designing an algorithm, all of its elements should be
cryptoanalyzed before publishing the new hash function. Only a totally evaluated and cryptoana-
lyzed algorithm can be rated as really secure, when no weaknesses were found with neither of the
methods.

5.7. Today’s point of view 34

5.7 Today’s point of view

Latterly collisions have been found for the widly used MD5 algorithm and also SHA-1, which
counted as more secure than MD5, experienced some attacks. This leads to the question, which
algorithm should be used now and whether these attacks are very critical or not. It’s not easy to
answer such a question, for the beginning, table 5.1 will show weaknesses which were found in the
algorithms described in chapter 4.

Algorithm Known attacks
MD4 Collisions can be found using just 4 to 64 random selected messages.

MD5 Collisions were found for the compression function, which makes it also possible
to find collisions for the whole algorithm.

SHA-0 Collision can be found with the complexity of about 239 operations.

SHA-1 Theoretical collision can be found in about 263 attempts. More dangerous is
the output size of 160 bits, which will make a birthday attack possible in the
near future.

SHA-2 No weaknesses were found. But these algorithms are very new, so the process
of cryptoanalysis isn’t so advanced to tell whether these algorithms are really
secure. The output length is secure against birthday attacks, using 256 bits
and more.

RIPEMD Collisions for a two-round version were found, but these could be extended to
the whole algorithm. Also the complexity for the reduced version is very low
with about 231 computations.

Whirlpool No weaknesses were found. But this algorithm is also not very well studied.
The output size is secure (512 bits).

Tiger Collisions were found with a complexity of about 244 attempts.

Table 5.1: Known attacks in popular algorithms

It can be seen, that the choices aren’t very widly spread when searching a secure algorithm. But,
of course, also attacked algorithms are still in use. For example MD5 is used by a lot of different
applications, although real weaknesses were found. A better alternative would be SHA-1, which
is another widly used algorithm. It has to be said, that the weaknesses found for SHA-1 are
not as precarious as the one for MD5, so this algorithm may be good enough for the next few
years. It’s also mentioned, that it’s output size is too short, but also this is only for theoretical
brute force attacks, because with the computer power used nowadays, a 160-bit hash value is still
secure enough. But to be on the safe side, one should come away from these two generally used
algorithms MD5 and SHA-1.

Also the security community isn’t sure, which way to follow. There is one part, who thinks,
that everyone should migrate to SHA-256 as soon as possible. This is also because of the reason,
that attacks will always get better. So it’ll be better to migrate to a new hash standard, before
there’s a big panic because of broken algorithms. It’s also said, that SHA-256 is at least more
secure because of its 256-bit output value, which makes the algorithm pretty resistant against
brute force attacks. But these people also represent the opinion, that further research should be
done to find more stronger algorithms. [28]

5.7. Today’s point of view 35

Other parties think, that people can stay with their current algorithms (like SHA-1 or MD5),
because the shown attacks are not primarily effecting real world applications. Also the opinion
is, it’s not totally evaluated, which algorithm will be totally secure for the future (e.g. from the
SHA-2 variants). [28]

(These two opinions derive from Bruce Schneier’s and Paul Hoffman’s points of view, who wrote
this into their RFC4270 Attacks on Cryptographic Hashes in Internet Protocols in November 2005.)

Chapter 6

Summary and prospect

This paper faced a very important sort of cryptographic algorithms, the hash functions. These
versatile cryptographic primitives have many application areas. When the security plays a role,
hash functions are used very often, of course also together with other cryptographic practices,
like block ciphers. For example when working with internet protocols, hash functions are used to
ensure security e.g. through privacy, when passwords or other data which is worth protecting is
stored as hash representation and not as plain text.

Like it’s with many other scientific fields, there have been endless designs and developments of
different hash functions, which could all be used nowadays. But, of course, it’s a fact that only
some of all the released hash algorithms have been analyzed accurately enough that one can offer
them for usage. So this paper pointed out most popular algorithms and attacks against them, to
tell whether they are secure or not.

Two research hypotheses were faced in this thesis. The first question asked after the design
of cryptographic hash functions. Most of the described functions in chapter 4 follow the iterated
scheme which was designed by Merkle and Damg̊ard (see section 3.1). But there exist also other
constructions for the compression function of hash algorithms, like the Miyaguchi-Preneel scheme.
This is used for hash functions which are based on block ciphers (like Whirlpool) but this sort of
construction wasn’t specified in this paper.

To give an understanding of the operation mode of hash functions, popular algorithms were accu-
rately specified in chapter 4. The following hash functions were pointed out (particular sections
are written in parentheses):

• Message Digest 4 - 128-bit output (4.1)

• Message Digest 5 - 128-bit output (4.2)

• Secure Hash Algorithms - 160 to 512-bit output (4.3)

• RACE Integrity Primitives Evaluation Message Digest - 160-bit output (4.4)

• Whirlpool - 512-bit output (4.5)

• Tiger - 192-bit output (4.6)

All algorithms from chapter 4, except Whirlpool, are influenced by the MD4 hash function. So this
algorithm served as predecessor for two of the most popular and widly used hash functions, MD5
and SHA-1. Algorithms, which follow the MD4 hash function, always work in five consecutive
steps.

Message padding A ”1“ bit and some ”0“ bits are added to the message.

36

Chapter 6. Summary and prospect 37

Append length The bit representation of the input message length is added to the end of the
message. After these two steps, the message is a multiple of 512 bits long.

Buffer inizialisation To compute a hash value of e.g. 128 bits, some 32-bit buffer values are
needed (in case of 128 bits, four buffer words are initialized).

Iteration of the compression function Here, the function works through 512-bit blocks of the
input message. Most compression functions are splitted into some rounds, in which every
buffer value is updated several times.

Arrange the output The output is the concatenation of the last buffer word values.

The answer to the second question wanted to point out, what criteria are important for a secure
algorithm. Some of the most common criteria were given in chapter 5. Furthermore the security
of actual used (and in chapter 4 described) algorithms was summed up to give an overview, what
popular hash functions could be called the most secure ones. The last chapter also gave a forecast
in using algorithms from cryptographers points of view.

A very important field for good hash functions is the cryptoanalysis. It’s, among others, used
to proove the security of an algorithm, e.g. to verify whether there exist no other attacks which
are simpler than standard brute force attacks. This evaluation process takes a long time and every
algorithm should be evaluated in detail before it’s released to the public. Facing the algorithms
from chapter 4, some attacks were described. Also section 3.5 showed some generic attacks, which
are independent of real implementations. Furthermore it would have been interesting to go more
into the detail of the cryptoanalysis and the design of cryptoanalytic methods for hash functions.
But this topic is very complex and would go beyond the scope of this thesis. But Bart Preneel [5]
and Bart Van Rompay [4] did with their works a good job on the field of cryptoanalysis of hash
function and block ciphers.

Bibliography

[1] B. Schneier. Applied Cryptography Protocols, Algorithms and Source Code in C. John Wiley
& Sons, 1996.

[2] B. Schneier and N. Ferguson. Practical Cryptography. John Wiley & Sons, 2003.

[3] A. Menezes. Handbook of Applied Cryptography. CRC, 1996.

[4] B. Van Rompay. Analysis and Design of Cryptographic Hash Functions, MAC Algorithms
and Block Ciphers. PhD thesis, Katholieke Universiteit Leuven, 2004. (http://www.cosic.
esat.kuleuven.be/publications/thesis-16.pdf).

[5] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke
Universiteit Leuven, 2003. (http://www.esat.kuleuven.ac.be/~preneel/phd_preneel_
feb1993.pdf).

[6] B. Preneel. The state of cryptographic hash functions. Lectures on Data Security, pages 158–
182, 1999. (http://www.cosic.esat.kuleuven.ac.be/publications/article-374.pdf).

[7] B. Den Boer and A. Bosselaers. An Attack on the Last Two Rounds of MD4, 1991. (http:
//www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9100.pdf).

[8] X. Wang et al. Cryptanalysis of the Hash Functions MD4 and RIPEMD. (http://www.
infosec.sdu.edu.cn/paper/md4-ripemd-attck.pdf).

[9] NIST/ITL. FIPS PUB 180-2 - Secure Hash Signature Standard (SHS), 2002. (http://csrc.
nist.gov/publications/fips/fips180-2/fips180-2withchangeno%tice.pdf).

[10] ISO/IEC. Dedicated Hash Functions, 2003. (http://www.ncits.org/ref-docs/FDIS_
10118-3.pdf).

[11] B. Preneel, H. Dobbertin, and A. Bosselaers. The cryptographic hash function ripemd-160.
CryptoBytes, pages 9–14, 1997. (http://www.cosic.esat.kuleuven.ac.be/publications/
article-317.pdf).

[12] P.S.L.M Barreto and V. Rijmen. The WHIRLPOOL Hashing Function, 2003. (http://
planeta.terra.com.br/informatica/paulobarreto/whirlpool.zip).

[13] R. Anderson and E. Biham. Tiger: A Fast New Hash Function. (http://www.cl.cam.ac.
uk/~rja14/Papers/tiger.pdf).

[14] Hash function. http://www.absoluteastronomy.com/ref/hash_function. 14.4.2006.

[15] Hashing. http://en.wikipedia.org/wiki/Hashing. 14.4.2006.

[16] Hash table. http://en.wikipedia.org/wiki/Hash_table. 14.4.2006.

[17] Redundancy check. http://en.wikipedia.org/wiki/Redundancy_check. 14.4.2006.

38

Bibliography 39

[18] An illustrated guide to cryptographic hashes. http://unixwiz.net/techtips/
iguide-crypto-hashes.html. 18.4.2006.

[19] Cryptographic hashes. http://www.vpnc.org/hash.html. 18.4.2006.

[20] Cryptographic hash function. http://en.wikipedia.org/wiki/Cryptographic_hash_
function. 19.4.2006.

[21] Merkle-damg̊ard hash function. http://en.wikipedia.org/wiki/Merkle-Damg%C3%A5rd_
construction. 21.4.2006.

[22] Avalanche effect. http://en.wikipedia.org/wiki/Avalanche_effect. 18.4.2006.

[23] Cyclic redundancy check. http://en.wikipedia.org/wiki/Cyclic_redundancy_check.
18.4.2006.

[24] Hmac. http://en.wikipedia.org/wiki/HMAC. 18.4.2006.

[25] Hmac algorithm in detail. http://www.cryptostuff.com/crypto/index.php?title=hmac.
18.4.2006.

[26] Salted hash. http://de.wikipedia.org/wiki/Salted_Hash. 19.4.2006.

[27] What is a digital signature? http://www.youdzone.com/signature.html. 19.4.2006.

[28] Rfc4270 - attacks on cryptographic hashes in internet protocols. http://www.ietf.org/rfc/
rfc4270.txt. 21.4.2006.

[29] Birthday paradox. http://en.wikipedia.org/wiki/Birthday_paradox. 23.4.2006.

[30] The hashing function lounge. http://paginas.terra.com.br/informatica/
paulobarreto/hflounge.html. 26.4.2006.

[31] Rfc1320 - the md4 message-digest algorithm. http://www.ietf.org/rfc/rfc1320.txt.
1.5.2006.

[32] Rfc1321 - the md5 message-digest algorithm. http://www.ietf.org/rfc/rfc1321.txt.
10.5.2006.

[33] Md5. http://en.wikipedia.org/wiki/MD5. 10.5.2006.

[34] Sha hash functions. http://en.wikipedia.org/wiki/SHA. 14.5.2006.

[35] Rfc3174 - us secure hash algorithm 1 (sha1). http://www.ietf.org/rfc/rfc3174.txt.
14.5.2006.

[36] Ripemd. http://en.wikipedia.org/wiki/RIPEMD. 16.5.2006.

[37] The hash function ripemd-160. http://homes.esat.kuleuven.be/~bosselae/ripemd160.
html. 16.5.2006.

[38] Whirlpool. http://en.wikipedia.org/wiki/WHIRLPOOL. 20.5.2006.

[39] The whirlpool hash function. http://paginas.terra.com.br/informatica/
paulobarreto/WhirlpoolPage.html%. 20.5.2006.

[40] Tiger (hash). http://en.wikipedia.org/wiki/Tiger_%28hash%29. 20.5.2006.

[41] Bijection. http://en.wikipedia.org/wiki/Bijective. 25.5.2006.

